Skip to content

Tutorial 2: MCGAE's spatial clustering of colorectal cancer liver metastasis data elucidated the phenomenon of tumor invasion

The main references of the article

  1. Rao A, Barkley D, Franca GS et al. Exploring tissue architecture using spatial transcriptomics, Nature 2021;596:211-220.
  2. Armingol E, Officer A, Harismendy O et al. Deciphering cell-cell interactions and communication from gene expression, Nat Rev Genet 2021;22:71-88.
  3. Ji N, van Oudenaarden A. Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos, WormBook 2012:1-16.
  4. Chen KH, Boettiger AN, Moffitt JR et al. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells, Science 2015;348:aaa6090.
  5. Moffitt JR, Bambah-Mukku D, Eichhorn SW et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region, Science 2018;362.
  6. Lubeck E, Coskun AF, Zhiyentayev T et al. Single-cell in situ RNA profiling by sequential hybridization, Nat Methods 2014;11:360-361.
  7. Lee JH, Daugharthy ER, Scheiman J et al. Highly multiplexed subcellular RNA sequencing in situ, Science 2014;343:1360-1363.
  8. Wang X, Allen WE, Wright MA et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science 2018;361.
  9. Ji AL, Rubin AJ, Thrane K et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma, Cell 2020;182:497-514.e422.
  10. Rodriques SG, Stickels RR, Goeva A et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution, Science 2019;363:1463-1467.
  11. Chen A, Liao S, Cheng M et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays, Cell 2022;185:1777-1792.e1721.
  12. Moncada R, Barkley D, Wagner F et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas, Nat Biotechnol 2020;38:333-342.
  13. Satija R, Farrell JA, Gennert D et al. Spatial reconstruction of single-cell gene expression data, Nat Biotechnol 2015;33:495-502.
  14. Dries R, Zhu Q, Dong R et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data, Genome Biol 2021;22:78.
  15. Zhao E, Stone MR, Ren X et al. Spatial transcriptomics at subspot resolution with BayesSpace, Nat Biotechnol 2021;39:1375-1384.
  16. Long Y, Ang KS, Li M et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST, Nat Commun 2023;14:1155.
  17. Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder, Nat Commun 2022;13:1739.
  18. Ren H, Walker BL, Cang Z et al. Identifying multicellular spatiotemporal organization of cells with SpaceFlow, Nat Commun 2022;13:4076.
  19. Shi X, Zhu J, Long Y et al. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks, Brief Bioinform 2023;24.
  20. Hu J, Li X, Coleman K et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network, Nat Methods 2021;18:1342-1351.
  21. Xu C, Jin X, Wei S et al. DeepST: identifying spatial domains in spatial transcriptomics by deep learning, Nucleic Acids Res 2022;50:e131.
  22. Zong Y, Yu T, Wang X et al. conST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics, bioRxiv 2022:2022.2001.2014.476408.
  23. Wang B, Luo J, Liu Y et al. Spatial-MGCN: a novel multi-view graph convolutional network for identifying spatial domains with attention mechanism, Briefings in Bioinformatics 2023;24:bbad262.
  24. He K, Zhang X, Ren S et al. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, p. 770-778.
  25. Zhang C, Yang Y, Tang S et al. Contrastively generative self-expression model for single-cell and spatial multimodal data, Briefings in Bioinformatics 2023;24:bbad265.
  26. Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. 2016, arXiv:1609.02907.
  27. Veličković P, Fedus W, Hamilton WL et al. Deep Graph Infomax. 2018, arXiv:1809.10341.
  28. Paszke A, Gross S, Massa F et al. PyTorch: an imperative style, high-performance deep learning library. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2019, Article 721.
  29. Kingma DP, Ba J. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 2014.
  30. Paszke A, Gross S, Massa F et al. Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems 2019;32.
  31. Maynard KR, Collado-Torres L, Weber LM et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex, Nat Neurosci 2021;24:425-436.
  32. Li H, Calder CA, Cressie N. Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model, Geographical Analysis 2007;39:357-375.
  33. Wu Y, Yang S, Ma J et al. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level, Cancer Discovery 2022;12:134-153.